main.c /* * menu.c * * Created: 30.05.2025 08:26:15 * Author : Student */ #include #define F_CPU 11059200UL #include #include #include #include "lcd.h" #include "ds18b20.h" #include "spi.h" #include "I2C.h" #define HIH8120_ADDR 0x27 volatile int8_t ekran = 0; // 0..4 volatile int8_t subscreen = 0; // 0 lub 1 volatile uint8_t running = 1; // sekundnik ON/OFF // --- Enkoder INT0 --- // PD2 - A (CLK) // PD3 - B (DT) // PD4 - SW (przycisk) void encoder_init(void) { DDRD &= ~((1 << PD2) | (1 << PD3) | (1 << PD4)); PORTD |= (1 << PD2) | (1 << PD3) | (1 << PD4); // Pull-up MCUCR |= (1 << ISC01); MCUCR &= ~(1 << ISC00); // INT0 on falling edge GICR |= (1 << INT0); sei(); } ISR(INT0_vect) { if (subscreen == 1) { subscreen = 0; // wyj�cie z podmenu return; } if (PIND & (1 << PD3)) ekran++; else ekran--; if (ekran > 6) ekran = 0; if (ekran < 0) ekran = 6; subscreen = 0; } int main(void) { lcd_init(); encoder_init(); ds18b20_init(); SPI_MasterInit(); _delay_ms(50); DDRB = 0xFF; PORTB = 0x00; uint16_t sekundy = 0; char buf[17]; while (1) { lcd_clear(); if (!(PIND & (1 << PD4))) { _delay_ms(300); if (ekran == 2) { lcd_show_startstop(running); running = !running; } else if (ekran != 3) { lcd_show_loading(); subscreen = 1; } while (!(PIND & (1 << PD4))) _delay_ms(10); } switch (ekran) { case 0: if (subscreen == 0) { lcd_gotoxy(0, 0); lcd_puts("Imie, nazwisko"); } else { lcd_gotoxy(0, 0); lcd_puts("Daniel"); lcd_gotoxy(0, 1); lcd_send_byte(0, 1); // � lcd_puts("wi"); lcd_send_byte(1, 1); // "�" lcd_puts("cki"); } break; case 1: if (subscreen == 0) { lcd_gotoxy(0, 0); lcd_puts("Numer indeksu"); } else { lcd_gotoxy(0, 0); lcd_puts("275777"); } break; case 2: lcd_gotoxy(0, 0); lcd_puts("Czas:"); lcd_gotoxy(0, 1); sprintf(buf, "%us", sekundy); lcd_puts(buf); if (running) sekundy++; _delay_ms(1000); break; case 3: lcd_gotoxy(0, 0); lcd_puts("Resetuj czas"); lcd_gotoxy(0, 1); lcd_puts("Wcisnij przycisk"); break; case 4: if (subscreen == 0) { lcd_gotoxy(0, 0); lcd_puts("Temperatura"); } else { lcd_gotoxy(0, 0); lcd_puts("Temperatura:"); int16_t temp_raw = ds18b20_read_temp(); if (temp_raw == -1000) { lcd_gotoxy(0, 1); lcd_puts("Brak czujnika"); } else { int16_t temp_c = temp_raw / 16; uint16_t temp_frac = ((temp_raw & 0x0F) * 625) / 100; lcd_gotoxy(0, 1); sprintf(buf, "%d.%02d%cC", temp_c, temp_frac, 223); lcd_puts(buf); } } break; case 5: if (subscreen == 0) { lcd_gotoxy(0, 0); lcd_puts("Temp z czujnika"); lcd_gotoxy(0, 1); lcd_puts("SPI TC77"); } else { lcd_gotoxy(0, 0); lcd_puts("Temperatura:"); int16_t raw = readTemperatureRaw_TC77(); if (raw == 0xFFFF) { lcd_gotoxy(0, 1); lcd_puts("Brak SPI danych"); } else { float temp = raw * 0.0625; int8_t cal = (int8_t)temp; uint8_t frac = (uint8_t)((temp - cal) * 100); lcd_gotoxy(0, 1); sprintf(buf, "%d.%02d%cC", cal, frac, 223); lcd_puts(buf); } } break; case 6: if (subscreen == 0) { lcd_gotoxy(0, 0); lcd_puts("Czujnik HIH8120"); lcd_gotoxy(0, 1); lcd_puts("I2C - wilg/temp"); } else { // Zmienna na dane uint8_t data[4]; volatile uint16_t res_H, res_T; volatile uint16_t humidity, temperature; // *100 // Sekwencja I2C — działająca: TWI_start(); TWI_address_transmit(); TWI_stop(); _delay_ms(50); // minimum 36 ms — spokojnie 50 ms OK TWI_start(); TWI_address_receive(); data[0] = TWI_receive_ACK(); data[1] = TWI_receive_ACK(); data[2] = TWI_receive_ACK(); data[3] = TWI_receive_NACK(); TWI_stop(); // Konwersja danych: res_H = ((uint16_t)(data[0] & 0x3F) << 8) | data[1]; humidity = (uint16_t)(((float)res_H / 16382.0f) * 10000.0f); // *100 res_T = ((uint16_t)(data[2]) << 6) | (data[3] >> 2); temperature = (uint16_t)(((float)res_T / 16382.0f) * 16500.0f - 4000.0f); // *100 lcd_gotoxy(0, 0); char buf[32]; sprintf(buf, "Temp: %d.%02d C", temperature / 100, temperature % 100); lcd_puts(buf); lcd_gotoxy(0, 1); sprintf(buf, "Wilg: %d.%02d %%", humidity / 100, humidity % 100); lcd_puts(buf); } break; } _delay_ms(300); } } i2c.c : /* * I2C_LCD.c * * Created: 06.05.2025 * Author : Student */ #include #define F_CPU 11059200UL #include #include // LCD PINY #define LCD_RS PA0 #define LCD_RW PA1 #define LCD_E PA2 #define LCD_D4 PA3 #define LCD_D5 PA4 #define LCD_D6 PA5 #define LCD_D7 PA6 volatile uint8_t odp; volatile uint8_t MSB_H, LSB_H, MSB_T, LSB_T; volatile uint16_t res_H, res_T; volatile uint16_t humidity, temperature; // *100 (czyli np. 2345 = 23.45) // --------------------- LCD --------------------- void pulse_E() { PORTA |= (1 << LCD_E); _delay_us(1); PORTA &= ~(1 << LCD_E); _delay_us(50); } void lcd_send_half(uint8_t data) { PORTA &= ~((1 << LCD_D7) | (1 << LCD_D6) | (1 << LCD_D5) | (1 << LCD_D4)); if (data & (1 << 3)) PORTA |= (1 << LCD_D7); if (data & (1 << 2)) PORTA |= (1 << LCD_D6); if (data & (1 << 1)) PORTA |= (1 << LCD_D5); if (data & (1 << 0)) PORTA |= (1 << LCD_D4); pulse_E(); } void lcd_send_byte(uint8_t data, uint8_t is_data) { if (is_data) PORTA |= (1 << LCD_RS); else PORTA &= ~(1 << LCD_RS); PORTA &= ~(1 << LCD_RW); // RW = 0 lcd_send_half(data >> 4); lcd_send_half(data & 0x0F); _delay_ms(2); } void lcd_init(void) { DDRA |= (1 << LCD_RS) | (1 << LCD_RW) | (1 << LCD_E) | (1 << LCD_D4) | (1 << LCD_D5) | (1 << LCD_D6) | (1 << LCD_D7); _delay_ms(15); lcd_send_half(0x03); _delay_ms(5); lcd_send_half(0x03); _delay_us(100); lcd_send_half(0x03); _delay_us(100); lcd_send_half(0x02); // tryb 4-bitowy lcd_send_byte(0x28, 0); // 2 linie lcd_send_byte(0x0C, 0); // ekran ON, kursor OFF lcd_send_byte(0x06, 0); // auto inkrementacja lcd_send_byte(0x01, 0); // czyszczenie _delay_ms(2); } void lcd_clear(void) { lcd_send_byte(0x01, 0); _delay_ms(2); } void lcd_gotoxy(uint8_t x, uint8_t y) { uint8_t addr = (y == 0) ? 0x00 : 0x40; lcd_send_byte(0x80 | (addr + x), 0); } void lcd_puts(const char* str) { while (*str) { lcd_send_byte(*str++, 1); } } // --------------------- TWI --------------------- void TWI_start(){ TWCR = (1 << TWEN) | (1 << TWSTA) | (1 << TWINT); while (!(TWCR & (1 << TWINT))); PORTD = TWSR; _delay_ms(200); } void TWI_address_transmit(){ TWDR = 0b01001000; // Write address TWCR = (1 << TWEN) | (1 << TWINT); while (!(TWCR & (1 << TWINT))); PORTD = TWSR; _delay_ms(200); } void TWI_address_receive(){ TWDR = 0b01001001; // Read address TWCR = (1 << TWEN) | (1 << TWINT); while (!(TWCR & (1 << TWINT))); PORTD = TWSR; _delay_ms(200); } uint8_t TWI_receive_ACK(void) { TWCR = (1 << TWEN) | (1 << TWINT) | (1 << TWEA); // ACK while (!(TWCR & (1 << TWINT))); return TWDR; } uint8_t TWI_receive_NACK(void) { TWCR = (1 << TWEN) | (1 << TWINT); // NACK while (!(TWCR & (1 << TWINT))); return TWDR; } void TWI_stop(){ TWCR = (1 << TWEN) | (1 << TWSTO); _delay_ms(200); PORTD = TWSR; } void TWI_calc(){ res_H = ((uint16_t)(MSB_H & 0x3F) << 8) | LSB_H; humidity = (uint16_t)(((float)res_H / 16382.0f) * 10000.0f); // *100 res_T = ((uint16_t)(MSB_T) << 6) | (LSB_T >> 2); temperature = (uint16_t)(((float)res_T / 16382.0f) * 16500.0f - 4000.0f); // *100 } // --------------------- MAIN --------------------- int main(void) { DDRD = 0xFF; // LEDy PORTD = 0x00; DDRC = 0x00; PORTC = 0xFF; lcd_init(); //ERROR TU CO� JEST NIE TAK Z M�ODSZA CZ�SCI� BIT�W while (1) { TWI_start(); TWI_address_transmit(); // Możesz tu np. wysłać numer rejestru czujnika TWI_stop(); _delay_ms(10); TWI_start(); TWI_address_receive(); MSB_H = TWI_receive_ACK(); LSB_H = TWI_receive_ACK(); MSB_T = TWI_receive_ACK(); LSB_T = TWI_receive_NACK(); TWI_stop(); TWI_calc(); // Wyświetlenie danych char buf[32]; lcd_clear(); lcd_gotoxy(0, 0); sprintf(buf, "Temp: %d.%02d C", temperature / 100, temperature % 100); lcd_puts(buf); lcd_gotoxy(0, 1); sprintf(buf, "Wilg: %d.%02d %%", humidity / 100, humidity % 100); lcd_puts(buf); _delay_ms(2000); // odświeżanie co 2 sekundy } }